Artigos Pedagógicos
  Avaliação Educacional
  Escola Digital
  Educação a Distância
  Educação Inclusiva
  Educação Infantil
  Estrutura do Ensino
  Filosofia da Educação
  Jovens e Adultos
  Pedagogia Empresarial
  Outros Assuntos
 História da Educação
 Linhas Pedagógicas
 Metodologia Científica
 Projetos/Planejamento
 Biografias
 Textos dos usuários

 Listar Todas
 Por Níveis
  Educação Infantil
  Ensino Fundamental I
  Ensino Fundamental II
 Por Disciplinas
  Matemática
  Língua Portuguesa
  Ciências
  Estudos Sociais
  Língua Inglesa
  Língua Espanhola

 Jogos On-line
 Desenhos para Colorir
 Contos e Poesias

 Glossário
 Laifis de Educação
 Estatuto da Criança
 Indicação de Livros
 Links Úteis
 Publique seu Artigo
 Fale Conosco

 
Busca Geral

 

Figura 01: Processo de modelagem matemática proposto por BIEMBENGUT & HEIN

Para D'AMBROSIO,


O indivíduo é parte integrante e ao mesmo tempo, observador da realidade. Sendo que ele recebe informações sobre determinada situação e busca através da reflexão a representação dessa situação em grau de complexidade. Para se chegar ao modelo é necessário que o indivíduo faca uma análise global da realidade na qual tem sua ação, onde define estratégias para criar o mesmo, sendo esse processo caracterizado de modelagem. (D'AMBROSIO, 1986, p. 65)

D?AMBROSIO (1986: p.66) propõe modelagem matemática através do esquema abaixo.

Figura 02: Processo de modelagem matemática proposto por D'AMBROSIO

 

Para representar uma situação real com modelo matemático há um envolvimento de uma série de procedimentos. Segundo BIEMBENGUT (2004, p.17-18) esses procedimentos podem ser agrupados em três etapas subdivididas em sete sub-etapas.

São elas:

1ª Etapa: Interação

  •  Reconhecimento da situação " problema " delimitação do problema;
  • Familiarização com o assunto a ser modelado - referencial teórico.

Nesta etapa, a situação a ser estudada deve ser reconhecida e delimitada, para isso é necessário o uso de pesquisas em livros, revistas, jornais ou através de dados obtidos junto a especialistas da área. Para Biembengut, é importante nesta etapa, efetuar uma descrição detalhada dos dados levantados, pois esses dados serão utilizados durante todo o processo de modelagem.

2ª Etapa: Matematização

  • Formulação do problema - hipótese;
  • Formulação do modelo matemático - desenvolvimento;

Resolução do problema a partir do modelo ? aplicação.

Há uma subdivisão nesta etapa, em formulação do problema, formulação do modelo e resolução. Com a situação do problema delimitada, há uma organização das informações obtidas, formulações das hipóteses, decidirem quais informações serão mais utilizadas, etc.

Segundo BIEMBENGUT & HEIN

  • O objetivo principal desta etapa do processo de modelar é chegar a um conjunto de expressões aritméticas, fórmulas, equações algébricas, gráficos, representações ou programa computacional que leve a solução ou permita a dedução de solução.
    (BIEMBENGUT & HEIN, 2003, p. 14)

3ª Etapa: Modelo matemático

Interpretação da solução;

  •  Validação do modelo - avaliação.

Nesta etapa, faz-se uma avaliação para verificar em que nível ele se aproxima da situação-problema representada. Faz-se então, uma interpretação do modelo, uma verificação de sua adequabilidade e uma avaliação do significado da solução. Todas essas etapas foram detalhadas no trabalho de modelagem aplicado na sala de aula, que será apresentado mais adiante. Percebe-se então, que esse detalhamento de etapas permite um melhor desempenho nas atividades.


Modelagem Matemática como Método de Ensino de Matemática

Quando falamos em ensino de matemática precisamos de métodos que levem o aluno a adquirir uma melhor compreensão da teoria matemática. Para isso, nós professores precisamos dar oportunidade aos alunos de estudar a situação-problema por meio de pesquisas (livros, jornais, revistas, etc.), desenvolvendo seu interesse e senso crítico.

Para BIEMBENGUT & HEIN (2003: p.18), "[...] a modelagem matemática no ensino pode ser um caminho para despertar no aluno o interesse por tópicos matemáticos que ele ainda desconhece, ao mesmo tempo que aprende a arte de modelar, matematicamente".

A modelagem matemática orienta-se pelo conteúdo programático a partir de modelos matemáticos ou de um tema e pela orientação dos alunos a pesquisa. Os alunos são orientados através de pesquisas em livros, revistas, jornais, internet, diálogo com o professor, com profissionais da área que se pretende construir um modelo. Após esse processo de pesquisas cada aluno ou grupo propõe um modelo matemático que seja mais adequado a ele, com isso da-se início ao processo de modelagem matemática.

Cujos objetivos são:

  • Interagir várias áreas do conhecimento (Física, Química, Engenharia, dentre outras), com a Matemática;
  • Mostrar a importância da matemática para a formação dos alunos;
  • Mostrar a importância da matemática no dia a dia das pessoas;
  • Melhorar o entendimento dos conceitos matemáticos.

BIEMBENGUT & HEIN (2003: p.19) sugerem cinco passos para por em prática o método de modelagem matemática:

1º) Diagnóstico

Para um melhor aproveitamento do processo de modelagem o professor deverá fazer um levantamento sobre os alunos, tais como: a disponibilidade dos alunos para trabalhos extra-classe, o conhecimento matemático que possuem, a realidade sócio-econômico e o horário da disciplina.

Anterior   Próxima

Curta nossa página nas redes sociais!

 

 

Mais produtos

 

Sobre Nós | Política de Privacidade | Contrato do Usuário | Anuncie | Fale Conosco

Copyright © 2008-2014 Só Pedagogia. Todos os direitos reservados. Desenvolvido por Grupo Virtuous.